Constructing projective varieties in weighted flag varieties II
نویسندگان
چکیده
منابع مشابه
Q-identities and Affinized Projective Varieties Ii. Flag Varieties
In a previous paper we defined the concept of an affinized projective variety and its associated Hilbert series. We computed the Hilbert series for varieties associated to quadratic monomial ideals. In this paper we show how to apply these results to affinized flag varieties. We discuss various examples and conjecture a correspondence between the Hilbert series of an affinized flag variety and ...
متن کاملWeighted Projective Varieties
0. Introduction i. Weighted projective space i.i. Notations 1.2. Interpretations 1.3. The first properties 1.4. Cohomology of 0F(n) 1.5. Pathologies 2. Bott's theorem 2.1. The sheaves ~(n) 2.2. Justifications 2.3. Cohomology of ~$(n) 3. Weighted complete intersections 3.1. Quasicones 3.2. Complete intersections 3.3. The dualizing sheaf 3.4. The Poincare series 3.5. Examples 4. The Hodge structu...
متن کاملComputing isolated orbifolds in weighted flag varieties
Given a weighted flag variety wΣ(μ, u) corresponding to chosen fixed parameters μ and u, we present an algorithm to compute lists of all possible projectively Gorenstein n-folds, having canonical weight k and isolated orbifold points, appearing as weighted complete intersections in wΣ(μ, u) or some projective cone(s) over wΣ(μ, u). We apply our algorithm to compute lists of interesting classes ...
متن کاملParametrizations of Flag Varieties
For the flag variety G/B of a reductive algebraic group G we define and describe explicitly a certain (set-theoretical) cross-section φ : G/B → G. The definition of φ depends only on a choice of reduced expression for the longest element w0 in the Weyl group W . It assigns to any gB a representative g ∈ G together with a factorization into simple root subgroups and simple reflections. The cross...
متن کاملStable Reductive Varieties Ii: Projective Case
0. Introduction 1 1. Main definitions 3 2. Polarized stable reductive varieties 4 2.1. Classification 4 2.2. Cohomology groups 8 3. Pairs 9 4. Moduli of stable reductive pairs 10 4.1. General remarks on families 10 4.2. One-parameter degenerations 11 4.3. Construction of the moduli space of pairs 13 4.4. Projectivity of the moduli space 17 4.5. Structure of the moduli space 18 5. Connection wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society
سال: 2015
ISSN: 0305-0041,1469-8064
DOI: 10.1017/s0305004114000620